

General Certificate of Education Advanced Subsidiary Examination January 2012

# **Mathematics**

## MPC2

Unit Pure Core 2

## Friday 13 January 2012 9.00 am to 10.30 am

#### For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

### Time allowed

• 1 hour 30 minutes

#### Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

### Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1

The diagram shows a sector OAB of a circle with centre O and radius 6 cm.



The angle between the radii OA and OB is  $\theta$  radians.

The area of the sector OAB is  $21.6 \text{ cm}^2$ .

- (a) Find the value of  $\theta$ . (2 marks)
- (b) Find the length of the arc AB. (2 marks)
- **2 (a)** Use the trapezium rule with five ordinates (four strips) to find an approximate value for

$$\int_0^4 \frac{2^x}{x+1} \, \mathrm{d}x$$

giving your answer to three significant figures. (4 marks)

(b) State how you could obtain a better approximation to the value of the integral using the trapezium rule. (1 mark)

**3 (a)** Write 
$$\sqrt[4]{x^3}$$
 in the form  $x^k$ 

(b) Write 
$$\frac{1-x^2}{\sqrt[4]{x^3}}$$
 in the form  $x^p - x^q$ . (2 marks)



(1 mark)

4 The triangle *ABC*, shown in the diagram, is such that *AB* is 10 metres and angle *BAC* is  $150^{\circ}$ .



The area of triangle ABC is  $40 \text{ m}^2$ .

(a) Show that the length of AC is 16 metres.

- (2 marks)
- (b) Calculate the length of *BC*, giving your answer, in metres, to two decimal places. (3 marks)
- (c) Calculate the smallest angle of triangle *ABC*, giving your answer to the nearest  $0.1^{\circ}$ . (3 marks)
- **5 (a) (i)** Describe the geometrical transformation that maps the graph of  $y = \left(1 + \frac{x}{3}\right)^6$  onto the graph of  $y = (1 + 2x)^6$ . (2 marks)
  - (ii) The curve  $y = \left(1 + \frac{x}{3}\right)^6$  is translated by the vector  $\begin{bmatrix} 3\\0 \end{bmatrix}$  to give the curve y = g(x). Find an expression for g(x), simplifying your answer. (2 marks)
  - (b) The first four terms in the binomial expansion of  $\left(1+\frac{x}{3}\right)^6$  are  $1 + ax + bx^2 + cx^3$ . Find the values of the constants *a*, *b* and *c*, giving your answers in their simplest form. (4 marks)



#### Turn over ▶

An arithmetic series has first term a and common difference d.

The sum of the first 25 terms of the series is 3500.

- (a) Show that a + 12d = 140. (3 marks)
- (b) The fifth term of this series is 100.

Find the value of d and the value of a. (4 marks)

(c) The *n*th term of this series is  $u_n$ . Given that

$$33\left(\sum_{n=1}^{25} u_n - \sum_{n=1}^k u_n\right) = 67\sum_{n=1}^k u_n$$
  
find the value of  $\sum_{n=1}^k u_n$ . (3 marks)

- 7 (a) Sketch the graph of  $y = \frac{1}{2^x}$ , indicating the value of the intercept on the y-axis. (2 marks)
  - (b) Use logarithms to solve the equation  $\frac{1}{2^x} = \frac{5}{4}$ , giving your answer to three significant figures. (3 marks)
  - (c) Given that

6

$$\log_a(b^2) + 3\log_a y = 3 + 2\log_a\left(\frac{y}{a}\right)$$

express y in terms of a and b.

Give your answer in a form not involving logarithms.

(5 marks)

- 8 (a) Given that  $2\sin\theta = 7\cos\theta$ , find the value of  $\tan\theta$ . (2 marks)
  - (b) (i) Use an appropriate identity to show that the equation

$$6\sin^2 x = 4 + \cos x$$

can be written as

$$6\cos^2 x + \cos x - 2 = 0 \qquad (2 \text{ marks})$$

(ii) Hence solve the equation  $6\sin^2 x = 4 + \cos x$  in the interval  $0^\circ < x < 360^\circ$ , giving your answers to the nearest degree. (6 marks)



**9** The diagram shows part of a curve crossing the x-axis at the origin O and at the point A(8, 0). Tangents to the curve at O and A meet at the point P, as shown in the diagram.



The curve has equation

$$y = 12x - 3x^{\frac{5}{3}}$$

(a) Find  $\frac{\mathrm{d}y}{\mathrm{d}x}$ .

- (b) (i) Find the value of  $\frac{dy}{dx}$  at the point *O* and hence write down an equation of the tangent at *O*. (2 marks)
  - (ii) Show that the equation of the tangent at A(8, 0) is y + 8x = 64. (3 marks)

(c) Find 
$$\int \left( 12x - 3x^{\frac{5}{3}} \right) dx$$
. (3 marks)

(d) Calculate the area of the shaded region bounded by the curve from O to A and the tangents OP and AP. (7 marks)



(2 marks)