

General Certificate of Education Advanced Subsidiary Examination January 2012

## Mathematics

## Unit Pure Core 2

## Friday 13 January 20129.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

## Time allowed

- 1 hour 30 minutes


## Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.


## Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .


## Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided. The diagram shows a sector $O A B$ of a circle with centre $O$ and radius 6 cm .


The angle between the radii $O A$ and $O B$ is $\theta$ radians.
The area of the sector $O A B$ is $21.6 \mathrm{~cm}^{2}$.
(a) Find the value of $\theta$.
(b) Find the length of the arc $A B$.

2 (a) Use the trapezium rule with five ordinates (four strips) to find an approximate value for

$$
\int_{0}^{4} \frac{2^{x}}{x+1} \mathrm{~d} x
$$

giving your answer to three significant figures.
(b) State how you could obtain a better approximation to the value of the integral using the trapezium rule.

3 (a) Write $\sqrt[4]{x^{3}}$ in the form $x^{k}$.
(b) Write $\frac{1-x^{2}}{\sqrt[4]{x^{3}}}$ in the form $x^{p}-x^{q}$.

4 The triangle $A B C$, shown in the diagram, is such that $A B$ is 10 metres and angle $B A C$ is $150^{\circ}$.


The area of triangle $A B C$ is $40 \mathrm{~m}^{2}$.
(a) Show that the length of $A C$ is 16 metres.
(b) Calculate the length of $B C$, giving your answer, in metres, to two decimal places.
(c) Calculate the smallest angle of triangle $A B C$, giving your answer to the nearest $0.1^{\circ}$.

5 (a) (i) Describe the geometrical transformation that maps the graph of $y=\left(1+\frac{x}{3}\right)^{6}$ onto the graph of $y=(1+2 x)^{6}$.
(ii) The curve $y=\left(1+\frac{x}{3}\right)^{6}$ is translated by the vector $\left[\begin{array}{l}3 \\ 0\end{array}\right]$ to give the curve $y=\mathrm{g}(x)$. Find an expression for $\mathrm{g}(x)$, simplifying your answer.
(b) The first four terms in the binomial expansion of $\left(1+\frac{x}{3}\right)^{6}$ are $1+a x+b x^{2}+c x^{3}$. Find the values of the constants $a, b$ and $c$, giving your answers in their simplest form.
$6 \quad$ An arithmetic series has first term $a$ and common difference $d$.
The sum of the first 25 terms of the series is 3500 .
(a) Show that $a+12 d=140$.
(b) The fifth term of this series is 100 .

Find the value of $d$ and the value of $a$.
(c) The $n$th term of this series is $u_{n}$. Given that

$$
33\left(\sum_{n=1}^{25} u_{n}-\sum_{n=1}^{k} u_{n}\right)=67 \sum_{n=1}^{k} u_{n}
$$

find the value of $\sum_{n=1}^{k} u_{n}$.

7 (a) Sketch the graph of $y=\frac{1}{2^{x}}$, indicating the value of the intercept on the $y$-axis.
(2 marks)
(b) Use logarithms to solve the equation $\frac{1}{2^{x}}=\frac{5}{4}$, giving your answer to three significant figures.
(c) Given that

$$
\log _{a}\left(b^{2}\right)+3 \log _{a} y=3+2 \log _{a}\left(\frac{y}{a}\right)
$$

express $y$ in terms of $a$ and $b$.
Give your answer in a form not involving logarithms.

8 (a) Given that $2 \sin \theta=7 \cos \theta$, find the value of $\tan \theta$.
(b) (i) Use an appropriate identity to show that the equation

$$
6 \sin ^{2} x=4+\cos x
$$

can be written as

$$
\begin{equation*}
6 \cos ^{2} x+\cos x-2=0 \tag{2marks}
\end{equation*}
$$

(ii) Hence solve the equation $6 \sin ^{2} x=4+\cos x$ in the interval $0^{\circ}<x<360^{\circ}$, giving your answers to the nearest degree.

9 The diagram shows part of a curve crossing the $x$-axis at the origin $O$ and at the point $A(8,0)$. Tangents to the curve at $O$ and $A$ meet at the point $P$, as shown in the diagram.


The curve has equation

$$
y=12 x-3 x^{\frac{5}{3}}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) (i) Find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $O$ and hence write down an equation of the tangent at $O$.
(ii) Show that the equation of the tangent at $A(8,0)$ is $y+8 x=64$.
(c) Find $\int\left(12 x-3 x^{\frac{5}{3}}\right) \mathrm{d} x$.
(d) Calculate the area of the shaded region bounded by the curve from $O$ to $A$ and the tangents $O P$ and $A P$.

